
Technical Report #UMIACS-TR-2002-98, Institute for Advanced Computer Studies,
University of Maryland at College Park, November, 2002
First Version of a Dataflow Interchange Format1

Fuat Keceli, Mingyung Ko, Shahrooz Shahparnia, and
Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland
College Park MD 20742, USA

Abstract

The dataflow interchange format (DIF) is a textual language that is geared
towards capturing the semantics of graphical design tools for DSP system design.
A key objective of DIF is to facilitate technology transfer across dataflow-based
DSP design tools by providing a common, extensible semantics for representing
coarse-grain dataflow graphs, and recognizing useful sub-classes of dataflow mod-
els. DIF captures essential modeling information that is required in dataflow-based
analysis and optimization techniques, such as algorithms for consistency analysis,
scheduling, memory management, and block processing, while optionally hiding
proprietary details such as the actual code that implements the dataflow blocks.
Accompanying DIF is a software package of intermediate representations and algo-
rithms that operate on application models that are captured through DIF. This paper
describes the structure of the DIF language together with several implementation
and usage examples.

1. Introduction

Modeling of DSP applications based on coarse-grain dataflow graphs is

widespread in the DSP design community, and a large and growing set of DSP

design tools support such dataflow semantics [2]. Since a variety of dataflow model-

ing styles and accompanying semantic constructs have been developed for DSP

design tools (e.g., see [1, 4, 5, 8, 12, 13]), a critical problem in the process of tech-

nology transfer to, from, and across such tools is a common, vendor-independent

language, and associated suite of intermediate representations and algorithms for

DSP-oriented dataflow modeling. This paper describes our first version of a data-

1. This research is sponsored in part by DARPA (contract #F30602-01-C-0171, through the
USC Information Sciences Institute), and the Semiconductor Research Corporation (contract
#2001-HJ-905)
1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
First Version of a Dataflow Interchange Format

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Electrical and Computer
Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

flow interchange format (DIF) for addressing this problem.

As motivated above, DIF is not centered around any particular form of data-

flow, and is designed instead to express different kinds of dataflow semantics. Our

present version of DIF includes built-in support for synchronous dataflow (SDF)

semantics [12], which have emerged as an important common denominator across

many DSP design tools and support powerful algorithms for analysis and software

synthesis [3]. DIF also includes support for the closely related cyclo-static dataflow

(CSDF) model [4], and has specialized support for various restricted versions of

SDF, in particular, homogeneous and single-rate dataflow, which are often used in

multiprocessor scheduling and hardware synthesis. Additionally, support for

dynamic, variable-parameter dataflow quantities (production rates, consumption

rates, and delays) is provided in DIF. DIF also captures hierarchy, and arbitrary non-

dataflow attributes that can be associated with dataflow graph nodes (also called

actors or blocks), edges, and graphs.

2. The Language

DIF is designed to be exported and imported automatically by tools. How-

ever, unlike other interchange formats, DIF is also designed to be read and written

by designers who wish to understand the dataflow structure of applications or the

dataflow semantics of a particular design tool, or who wish to specify an application

model for one or more design tools using the features of DIF. Indeed, DIF provides

the programmer a unique, integrated set of semantic features that are relevant to

dataflow modeling. As a result, DIF is not based on XML, which is more for pure

data exchange applications, and is not well-suited for being read or written by

humans. Due to the emphasis on readability, DIF supports C/Java-style comments,

allows specifications to be modularized across multiple files (through integration

with the standard C preprocessor), and is based on a block-structured syntax.

A dataflow graph definition in DIF consists in general of six blocks of code:

topology, interface, refinement, user-defined and built-in attributes, and parameters.
2

These code blocks are contained in a main block defining the dataflow graph. Note

that each block is optional without violating language basics. Using the basedon

keyword, a graph can inherit the same topology as another graph while overriding

arbitrary attributes and parameters. Figure 1 illustrates the general form of a graph

definition block. The optional keyword on the first line denotes the type (form of

dataflow). Further details on the different graph types available are described in Sec-

tion 3.

2.1 Defining the Topology of a Dataflow Graph

The topology definition of a graph consists of node and edge definition

blocks (nodes and edges). These define the sets of nodes and edges, and associate a

unique identifier with each node and each edge. Since dataflow graphs are directed

graphs, edges are specified by their source and sink node identifiers. A node defini-

tion may also include a port association (described further in Section 2.2) for inter-

facing to other graphs. The lower left side of Figure 3 shows an example of a

topology definition block.

2.2 Hierarchical Graphs

Given the importance of hierarchical design in graphical design tools, a nec-

essary feature of the DIF language is the general ability to associate a node of a

graph with a “nested” subgraph. Such hierarchical nodes are called supernodes in

DIF terminology. In addition to providing for hierarchy, this supernode feature

allows for reuse of graph specifications: a topological pattern that appears multiple

times in a graph can be defined as a separate graph and every occurrence in the orig-

inal graph (parent graph) or in multiple graphs can be replaced with a single node.

A graph can be declared as a nested subgraph in the refinement block of a

parent graph. For a graph to be declared as a subgraph, it should have an interface

block, which includes a list of directed ports. A port will then be associated either

with a node (in the topology block) or with one of the ports of a supernode (in the

refinement block).

Figure 2 gives a detailed example of the hierarchy mechanism in DIF.
3

[#include filename.dif”]
…
[keyword] graph graphID [basedon graphID] {

params {
param prm1, prm2, …;
domain (prm1, {1, 2, …});
domain (prm2, [1, 5]);
…

}
interface {

input portID, portID, …;
output portID, portID, …;

}
topology {

nodes {nodeID[:portID], nodeID[:portID], …}
edges {

edgeID sourceNodeID sinkNodeID;
edgeID sourceNodeID sinkNodeID;
...

}
}
refinement {

subgraphID nodeID
subPortID:edgeID, subPortID:PortID, …;

subgraphID nodeID
subPortID:portID, subPortID:edgeID, …;

…
}
attribute attributeName {

edgeID value;
nodeID value;
...

}
…
[built-in attribute] {…}
[built-in attribute] {…}

…
}

Figure 1. A sketch of a dataflow graph definition in DIF. Items in boldface in this fig-
ure and throughout the paper are DIF keywords. Italicized words are to be defined
by the user. Parts in square brackets are optional.
4

n1 n2

P1 P2

graph Graph1 {
…
interface {

input P1, P2;
}
topology {

nodes {n1:P1, n2:P2}
…

}

n4

n3
graph Graph2 {

…
refinement {

Graph1 n4 P1:e2, P2:P3;
}
…

}

n1

n3
P3

n2e1
e2

(a)

(c)

Figure 2. (a) (b) Definition of DIF graphs with interfaces and supernodes. A dashed
line means a port association. The refinement expression in Graph2 specifies that
node n4 will be associated with Graph1 connecting edge e3 and port P3 to ports P1
and P2 of Graph1 respectively. Note that the direction of each connection element
(a port or an edge) should match the direction of the port that it is connected to. (c)
The result after flattening the supernode (n4) in Graph2.

e1

e2

P3

P1

P2

Graph1

Graph2

(b)
5

2.3 User-defined and Built-in Attributes

DIF supports assigning attributes to nodes, edges, and graphs. There are two

types of attributes: user-defined and built-in. User-defined attributes are attributes

with arbitrary names that can take on any value assigned by the user. Built-in

attributes are pre-defined attributes, which have associated keywords in the DIF lan-

guage, and are usually handled in a special way by the compiler. Depending on the

particular semantics of a design tool and the type of the graph, a compiler might

read built-in attribute values into special fields of the graph-related data structures,

and it may perform checks on the values to see if they are acceptable (e.g., positive-

valued). An example of a built-in attribute is the delay parameter of graph edges.

2.4 Parameters

Parameterization of attribute values is possible in DIF with the params

block. The capability of defining a possible set of values (domain) for an attribute

instead of a specific value provides useful support for dynamic and reconfigurable

dataflow graphs. The domain of a parameter can be an enumerated set of values, an

interval, or a composition of both forms.

2.5 The basedon Feature

Using the basedon keyword, a graph that has the same topology as another

graph, but with different attribute or parameter values can be defined concisely with

just a reference to the other graph. The user can change selected parameter and

attribute values by overriding them in attribute and params blocks of the new

graph.

2.6 Other Language Specifications

The DIF language employs C-language style identifiers: an edge, node, port

or graph identifier should start with a non-digit (an alphabetic character or the

underscore) and can be followed by digits or non-digits. Non-digits are defined as

the combination of uppercase and lowercase letters and the underscore character

(‘_’). Identifiers are unique and should not be repeated even across different kinds of
6

entities. Exceptions to this rule are subgraphs and subgraph port identifiers in sub-

graph declarations.

In the present version of DIF, a value for an attribute can be one of the fol-

lowing four types: double, double matrix, string, and list. Double matrices are spec-

ified in the row-by-row form

.

For example,

specifies the matrix

.

Strings are specified in C-language style, allowing the ‘+’ operator for concatena-

tion. Lists are specified in the form , where each is a double, dou-

ble matrix, string, or (nested) list.

2.6.1 Summary of Keywords

Following is a list of keywords that are used in DIF grouped according to the

parts of DIF specifications in which they are used. The DIF language is case sensi-

tive, and therefore, keywords must be used with correct case.

• Top level definition: basedon, graph, dif, sdf, csdf, singleRate, hsdf.

• Topology definition: topology, nodes, edges.

• Interface declaration: interface, input, output.

• Subgraph declarations: refinement.

• Parameter definitions: params, param, domain.

• Attribute definitions:

• User-defined: attribute

• Built-in: production, consumption, delay, transfer.

These keywords are written in boldface throughout the paper for emphasis.

a1 1, a1 2, … a1 n, a2 1, a2 2, … a2 n, … am 1, am 2, … am n,, , ,()

5 7 2 2 6 8, ,()

3 2×

5 7
2 2
6 8

v1 v2 … vk, , ,[] vi
7

3. Dataflow Support

The DIF package is a Java-based software package for DIF that is being

developed, along with the DIF language, at the University of Maryland. Associated

with each of the supported dataflow graph types is an intermediate representation

within the DIF package that provides an extensible set of data structures and algo-

rithms for analyzing, manipulating, and optimizing DIF representations. Also, con-

version algorithms between compatible graph types (such as CSDF to SDF or SDF

to single-rate conversion) are provided. Presently, the collection of dataflow graph

algorithms is based primarily on well-known algorithms (e.g., algorithms for itera-

tion period computation [9], consistency validation [12], and loop scheduling [3]),

and the contribution of DIF in this regard is to provide a common repository and

front-end through which different DSP tools can have efficient access to these algo-

rithms. We are actively extending this repository with additional dataflow modeling

features and additional algorithms, including more experimental algorithms for data

partitioning and hardware synthesis. Below is a summary of the dataflow models

that are currently supported in DIF.

3.1 DIF Graphs

DIF graphs are the default and most general class of dataflow graphs sup-

ported by DIF. DIF graphs can be specified explicitly using the dif keyword. In DIF

graphs, no restriction is made on the rate at which data is produced and consumed

on dataflow edges, and other types of specialized assumptions, such as statically-

known delay attributes, are avoided as well. In the underlying intermediate repre-

sentation, an arbitrary Java object can be attached to each node/edge incidence to

represent the associated dataflow properties. In the inheritance hierarchy of the DIF

intermediate representations, DIF graphs are the base class of all other forms of

dataflow. In this sense, all dataflow graphs modeled in DIF are instances of DIF

graphs. Furthermore, if a tool cannot export to any of the more specialized versions

of dataflow supported by DIF, it should export to DIF graphs.
8

3.2 CSDF Graphs

In restricted versions of the DIF graph model that are recognized in DIF, the

number of data values (tokens) produced and consumed by each node may be

known statically and edge delays may be fixed integers. For example, CSDF graphs,

based on the cyclo-static dataflow model [4], are specified by annotating DIF graph

definitions with the csdf keyword. In CSDF graphs, production and consumption

rates can vary between node executions, as long as the variation forms a certain type

of periodic pattern. Consequently, values of these rates are integer vectors. These

vectors are associated with CSDF graph edges using the production and consump-

tion keywords. For example, the code fragment

production {e1 [1 1 2 4]; e2 [2 2 3];}

associates the periodic production patterns

 and

with edges and , respectively.

3.3 SDF Graphs

Similar to CSDF graphs, token production and consumption rates of syn-

chronous dataflow (SDF) graphs [12] are known at compile time, but they are fixed

rather than periodic integer values. SDF graphs are specified using the sdf keyword,

and the arguments of production and consumption specifiers in SDF graphs are

required to be integers, as in:

production {e1 4; e2 3;}
consumption {e1 5; e2 2;}
delay {e1 1; e2 2;}

The last statement, which is permissible in other DIF graph types as well,

associates integer-valued delays to the specified edges.

3.4 Single-Rate and HSDF Graphs

Single-rate graphs are a special case of SDF graphs in which the production

and consumption values on each edge are identical. In single-rate graphs, nodes exe-

cute (“fire”) at the same average rate [3]. In the slightly more restricted case of

1 1 2 4 1 1 2 4 …, , , , , , , ,() 2 2 3 2 2 3 …, , , , , ,()

e1 e2
9

homogeneous SDF (HSDF) graphs, production and consumption values are equal to

one for all edges. Instead of production and consumption attributes, DIF uses the

transfer keyword for edges in single-rate graphs. DIF does not associate an attribute

for token transfer volume in HSDF graphs since it is not variable.

3.5 Parameterized Dataflow Graphs

Parameterized dataflow [1] graphs can be represented in DIF using the

parameterization and hierarchy facilities of DIF. Specifically, separate subgraphs

can be defined for the init, subinit, and body subsystems of a parameterized dataflow

model, and variable parameters with associated parameter value domains can be

defined and linked to outputs of the init or subinit graphs through user-defined

attributes.

4. DIF Language Implementation

The DIF package includes a parser that converts a DIF specification into a

suitable, graph-theoretic intermediate representation based on the particular form of

dataflow used in the DIF specification. This parser is implemented using a Java-

based compiler-compiler called SableCC [7]. The flexible structure of the compiler

enables easy extensibility for different graph types.

Using DIF writer classes, it is also possible to generate DIF files from inter-

mediate representations (graph objects) in the DIF package. The default writer is the

DIF graph writer, which generates a DIF graph specification, and custom writers can

be constructed by extending the DIF graph writer base class to handle semantic

additions/restrictions by converting them to appropriate built-in attributes, structural

conventions, etc.

The DIF package builds on some of the packages of Ptolemy II [11]. In par-

ticular, the attribute features of DIF are built on the rich classes for managing

attributes in Ptolemy II, and the intermediate representations of DIF build on the

graph package of Ptolemy II, which provides data structures and algorithms for

working with generic graphs.
10

5. Examples

This section illustrates some further examples of the utility of the DIF pack-

age.

5.1 Ptolemy

We have developed a back-end for Ptolemy II that generates DIF graphs

from dataflow-based Ptolemy II models. An example of Ptolemy-to-DIF conversion

through this back-end is shown in Figure 3. A front-end that converts DIF specifica-

tions into Ptolemy II models is under development.

5.2 MCCI Autocoding Toolset

Another usage example of DIF is in the Autocoding Toolset of Management,

Communications, and Control, Inc. (MCCI) [14]. This tool is designed for mapping

large, complex signal processing applications onto high-performance multiproces-

sor platforms. Through a DIF-generating back-end developed at MCCI, the Autoc-

oding Toolset supports generation of DIF specifications after partitioning the

application.

Figure 4 shows a synthetic aperture radar (SAR) application developed in

the Autocoding Toolset. The functional requirements of SAR processing consist of

four logical processes: data input and conditioning, range processing, azimuth pro-

cessing and data output. The Autocoding Toolset partitions the application into five

parts dividing the azimuth processing into two parts. Figure 4(a) shows the top level

functional definition graph and Figure 4(b) shows the range subgraph. DIF defini-

tions of these graphs can be found in Figure 5. Range processing of data includes

conversion to complex floating point numbers, padding the end of each data row

with zeros, multiplying by a weighting function, computing the FFT, and multiply-

ing the data by the radar cross-section compensation.

5.3 Visualization and Benchmark Generation

The DIF package contains facilities to generate DIF specifications of ran-

domly-generated, synthetic benchmarks. This can be useful for more extensive test-
11

ing of tools and algorithms beyond the set of available application models. The

benchmark generator is based on an implementation of Sih’s dataflow graph genera-

tion algorithm [15], which constructs application-like graphs by mimicking patterns

found in practical dataflow models.

DIF specifications and intermediate representations can also be converted

automatically into the input format of dot [10], a well-known graph-visualization

Figure 3. Ptolemy II model of a PAM communication system that is exported to DIF.
This example represents the functionality of each node as a computation attribute,
which is derived from the Ptolemy II library definition.

sdf graph _graph {
topology {

nodes {
n0, n1, n2,
n3, n4, n5

}
edges {

e0 n0 n1;
e1 n1 n2;
e2 n2 n4;
e3 n3 n2;
e4 n4 n5;

}
}
production {

e0 1; e1 16;
e2 1; e3 1;
e4 1;

}

consumption {
e0 1; e1 1;
e2 1; e3 1;
e4 1;

}
delay {

e0 0; e1 0;
e2 0; e3 0;
e4 0;

}
computation {

n0 DiscreteRandomSource;
n1 RaisedCosine;
n2 AddSubtract;
n3 Gaussian;
n4 RaisedCosine;
n5 SequenceScope;

}
}

12

tool. Figure 6 shows a synthetic DIFGraph generated by the DIF package and laid-

out through the dot generator.

6. Summary

This paper has presented the dataflow interchange format (DIF), a textual

language for writing coarse-grain, dataflow-based models of DSP applications, and

for communicating such models between DSP design tools. The objectives of DIF

OUT

AZI1

AZI2

range

in_sar

out_rng

out_azi1

out_azi2

fft

pad

wght

comp

padded

weighted

compressed

(a) (b)

IN

Figure 4. (a) The top-level partitioned application graph of a SAR application in the
MCCI Autocoding Toolset. (b) Range processing graph.
13

graph rangeGraph {
interface {

input rng_in;
output rng_out;

}
topology {

nodes {
pad:rng_in,
wght, fft, comp:rng_out

}
edges {

padded pad wght;
weighted wght fft;
compressed fft comp;

}
}
production {

padded 1048576;
weighted 1048576;
compressed 1048576;

}
consumption {

padded 1048576;
weighted 1048576;
compressed 1048576;

}
delay {

padded 0; weighted 0; compressed 0;
}

}

graph SAR {
...
refinement {

rangeGraph range
rng_in:in_sar rng_out:out_rng;

}
...

}
Figure 5. (a) Range processing in DIF. (b) Range processing instantiation in SAR.
Note that although Figure 4(b) represents a single-rate graph, the Autocoding
Toolset presently exports this in the more general form of a DIF graph. This exam-
ple is adapted due to space constraints.

(a)

(b)
14

n0

n1

0

1

1

n2

0
1

1

n3

0

1

1

n5

0

1

1

n6

0

1

1

n7

0

1

1

n8

0

1

1

n9

0

1

1

n10

0

1

1

n11

0

1

1

n12

0
1

1

n4

n14

0

1

1

n15

0

1

1

n16

0

1

1

n17

0

1

1

n18

0

1

1

n19

0

1

1

n20

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

n13

0

1

1

0

1

1

0

1

1

0
1

1

0

1

1

0

1

1

0

1

1

sdf graph _graph {
topology {

nodes {
n0, n1, n2,
n3, n4, n5,
n6, n7, n8,
n9, n10, n11,
n12, n13, n14,
n15, n16, n17,
n18, n19, n20

}
edges {

e0 n0 n1;
e1 n0 n2;
e2 n1 n3;
e3 n2 n5;
e4 n5 n4;
...
e31 n20 n13;

}
}
production {

e0 1;
...
e31 1;

}
consumption {

e0 1;
...
e31 1;

}
delay {

e0 0;
...
e31 0;

}
}

Figure 6. A synthetic DIFGraph generated by the DIF package and dot generator
output for the graph.
15

are to accommodate a variety of dataflow-related modeling constructs, and to facili-

tate experimentation with and technology transfer involving such constructs. We are

actively extending the DIF language, including the set of supported dataflow model-

ing semantics, and the associated repository of intermediate representations and

algorithms.

7. Bibliography

[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for

DSP systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October

2001.

[2] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code

generation for DSP. IEEE Transactions on Circuits and Systems — II: Analog and

Digital Signal Processing, 47(9):849-875, September 2000.

[3] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded soft-

ware from synchronous dataflow specifications. Journal of VLSI Signal Processing

Systems for Signal, Image, and Video Technology, 21(2):151-166, June 1999.

[4] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data

flow. In Proc. ICASSP, pages 3255-3258, May 1995.

[5] J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs using the token

flow model. In Proc. ICASSP, April 1993.

[6] J. B. Dennis. First version of a data flow procedure language. Technical report,

Laboratory for Computer Science, Massachusetts Institute of Technology, May

1975.

[7] E. Gagnon. SableCC, an object-oriented compiler framework. Master's thesis,

School of Computer Science, McGill University, Montreal, Canada, March 1998.

[8] G. R. Gao, R. Govindarajan, and P. Panangaden. Well-behaved programs for

DSP computation. In Proc. ICASSP, March 1992.
16

[9] K. Ito and K. K. Parhi. Determining the iteration bounds of single-rate and multi-

rate data-flow graphs. In Proc. IEEE Asia-Pacific Conference on Circuits and Sys-

tems, December 1994.

[10] E. Koutsofios and S. C. North. dot user's manual. Technical report, AT&T Bell

Laboratories, November 1996.

[11] E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M01/

11, Department of EECS, UC Berkeley, March 2001.

[12] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the

IEEE, 75(9):1235-1245, September 1987.

[13] M. Pankert, O. Mauss, S. Ritz, and H. Meyr. Dynamic data flow and control

flow in high level DSP code synthesis. In Proc. ICASSP, 1994.

[14] C. B. Robbins. Autocoding Toolset software tools for automatic generation of

parallel application software. Technical report, Management, Communications &

Control, Inc., 2002.

[15] G. C. Sih. Multiprocessor Scheduling to account for Interprocessor Communi-

cation. Ph.D. thesis, Department of EECS, UC Berkeley, April 1991.
17

	First Version of a Dataflow Interchange Format
	Fuat Keceli, Mingyung Ko, Shahrooz Shahparnia, and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering, and
	Institute for Advanced Computer Studies
	University of Maryland
	College Park MD 20742, USA
	Abstract
	1. Introduction
	Modeling of DSP applications based on coarse-grain dataflow graphs is widespread in the DSP design community, and a large and growing set of DSP design tools support such dataflow semantics [2]. Since a variety of dataflow model ing styles an...
	As motivated above, DIF is not centered around any particular form of data flow, and is designed instead to express different kinds of dataflow semantics. Our present version of DIF includes built-in support for synchronous dataflow (SDF) sem...
	2. The Language

	DIF is designed to be exported and imported automatically by tools. How ever, unlike other interchange formats, DIF is also designed to be read and written by designers who wish to understand the dataflow structure of applications or the data...
	A dataflow graph definition in DIF consists in general of six blocks of code: topology, interface, refinement, user-defined and built-in attributes, and parameters. These code blocks are contained in a main block defining the dataflow graph. ...
	2.1 Defining the Topology of a Dataflow Graph
	Figure 1. A sketch of a dataflow graph definition in DIF. Items in boldface in this fig ure and throughout the paper are DIF keywords. Italicized words are to be defined by the user. Parts in square brackets are optional.

	The topology definition of a graph consists of node and edge definition blocks (nodes and edges). These define the sets of nodes and edges, and associate a unique identifier with each node and each edge. Since dataflow graphs are directed gra...
	2.2 Hierarchical Graphs

	Given the importance of hierarchical design in graphical design tools, a nec essary feature of the DIF language is the general ability to associate a node of a graph with a “nested” subgraph. Such hierarchical nodes are called supernodes in D...
	A graph can be declared as a nested subgraph in the refinement block of a parent graph. For a graph to be declared as a subgraph, it should have an interface block, which includes a list of directed ports. A port will then be associated eithe...
	Figure 2 gives a detailed example of the hierarchy mechanism in DIF.
	Figure 2. (a) (b) Definition of DIF graphs with interfaces and supernodes. A dashed line means a port association. The refinement expression in Graph2 specifies that node n4 will be associated with Graph1 connecting edge e3 and port P3 to por...
	2.3 User-defined and Built-in Attributes

	DIF supports assigning attributes to nodes, edges, and graphs. There are two types of attributes: user-defined and built-in. User-defined attributes are attributes with arbitrary names that can take on any value assigned by the user. Built-in...
	2.4 Parameters

	Parameterization of attribute values is possible in DIF with the params block. The capability of defining a possible set of values (domain) for an attribute instead of a specific value provides useful support for dynamic and reconfigurable da...
	2.5 The basedon Feature

	Using the basedon keyword, a graph that has the same topology as another graph, but with different attribute or parameter values can be defined concisely with just a reference to the other graph. The user can change selected parameter and att...
	2.6 Other Language Specifications

	The DIF language employs C-language style identifiers: an edge, node, port or graph identifier should start with a non-digit (an alphabetic character or the underscore) and can be followed by digits or non-digits. Non-digits are defined as th...
	In the present version of DIF, a value for an attribute can be one of the fol lowing four types: double, double matrix, string, and list. Double matrices are spec ified in the row-by-row form
	.
	.
	2.6.1 Summary of Keywords

	Following is a list of keywords that are used in DIF grouped according to the parts of DIF specifications in which they are used. The DIF language is case sensi tive, and therefore, keywords must be used with correct case.
	These keywords are written in boldface throughout the paper for emphasis.
	3. Dataflow Support

	The DIF package is a Java-based software package for DIF that is being developed, along with the DIF language, at the University of Maryland. Associated with each of the supported dataflow graph types is an intermediate representation within ...
	3.1 DIF Graphs

	DIF graphs are the default and most general class of dataflow graphs sup ported by DIF. DIF graphs can be specified explicitly using the dif keyword. In DIF graphs, no restriction is made on the rate at which data is produced and consumed on ...
	3.2 CSDF Graphs

	In restricted versions of the DIF graph model that are recognized in DIF, the number of data values (tokens) produced and consumed by each node may be known statically and edge delays may be fixed integers. For example, CSDF graphs, based on ...
	production {e1 [1 1 2 4]; e2 [2 2 3];}
	and
	3.3 SDF Graphs

	Similar to CSDF graphs, token production and consumption rates of syn chronous dataflow (SDF) graphs [12] are known at compile time, but they are fixed rather than periodic integer values. SDF graphs are specified using the sdf keyword, and t...
	The last statement, which is permissible in other DIF graph types as well, associates integer-valued delays to the specified edges.
	3.4 Single-Rate and HSDF Graphs

	Single-rate graphs are a special case of SDF graphs in which the production and consumption values on each edge are identical. In single-rate graphs, nodes exe cute (“fire”) at the same average rate [3]. In the slightly more restricted case o...
	3.5 Parameterized Dataflow Graphs

	Parameterized dataflow [1] graphs can be represented in DIF using the parameterization and hierarchy facilities of DIF. Specifically, separate subgraphs can be defined for the init, subinit, and body subsystems of a parameterized dataflow mod...
	4. DIF Language Implementation

	The DIF package includes a parser that converts a DIF specification into a suitable, graph-theoretic intermediate representation based on the particular form of dataflow used in the DIF specification. This parser is implemented using a Java- ...
	Using DIF writer classes, it is also possible to generate DIF files from inter mediate representations (graph objects) in the DIF package. The default writer is the DIF graph writer, which generates a DIF graph specification, and custom write...
	The DIF package builds on some of the packages of Ptolemy II [11]. In par ticular, the attribute features of DIF are built on the rich classes for managing attributes in Ptolemy II, and the intermediate representations of DIF build on the gra...
	5. Examples

	This section illustrates some further examples of the utility of the DIF pack age.
	5.1 Ptolemy

	We have developed a back-end for Ptolemy II that generates DIF graphs from dataflow-based Ptolemy II models. An example of Ptolemy-to-DIF conversion through this back-end is shown in Figure 3. A front-end that converts DIF specifica tions int...
	Figure 3. Ptolemy II model of a PAM communication system that is exported to DIF. This example represents the functionality of each node as a computation attribute, which is derived from the Ptolemy II library definition.
	5.2 MCCI Autocoding Toolset
	Figure 4. (a) The top-level partitioned application graph of a SAR application in the MCCI Autocoding Toolset. (b) Range processing graph.
	Figure 5. (a) Range processing in DIF. (b) Range processing instantiation in SAR. Note that although Figure 4(b) represents a single-rate graph, the Autocoding Toolset presently exports this in the more general form of a DIF graph. This exam ...

	Another usage example of DIF is in the Autocoding Toolset of Management, Communications, and Control, Inc. (MCCI) [14]. This tool is designed for mapping large, complex signal processing applications onto high-performance multiproces sor plat...
	Figure 4 shows a synthetic aperture radar (SAR) application developed in the Autocoding Toolset. The functional requirements of SAR processing consist of four logical processes: data input and conditioning, range processing, azimuth pro cessi...
	5.3 Visualization and Benchmark Generation

	The DIF package contains facilities to generate DIF specifications of ran domly-generated, synthetic benchmarks. This can be useful for more extensive test ing of tools and algorithms beyond the set of available application models. The benchm...
	DIF specifications and intermediate representations can also be converted automatically into the input format of dot [10], a well-known graph-visualization tool. Figure 6 shows a synthetic DIFGraph generated by the DIF package and laid- out t...
	Figure 6. A synthetic DIFGraph generated by the DIF package and dot generator output for the graph.
	6. Summary

	This paper has presented the dataflow interchange format (DIF), a textual language for writing coarse-grain, dataflow-based models of DSP applications, and for communicating such models between DSP design tools. The objectives of DIF are to a...
	7. Bibliography
	[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October 2001.
	[2] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation for DSP. IEEE Transactions on Circuits and Systems - II: Analog and Digital Signal Processing, 47(9):849-875, September 2000.
	[3] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded soft ware from synchronous dataflow specifications. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 21(2):151-166, June 1999.
	[4] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data flow. In Proc. ICASSP, pages 3255-3258, May 1995.
	[5] J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs using the token flow model. In Proc. ICASSP, April 1993.
	[6] J. B. Dennis. First version of a data flow procedure language. Technical report, Laboratory for Computer Science, Massachusetts Institute of Technology, May 1975.
	[7] E. Gagnon. SableCC, an object-oriented compiler framework. Master's thesis, School of Computer Science, McGill University, Montreal, Canada, March 1998.
	[8] G. R. Gao, R. Govindarajan, and P. Panangaden. Well-behaved programs for DSP computation. In Proc. ICASSP, March 1992.
	[9] K. Ito and K. K. Parhi. Determining the iteration bounds of single-rate and multi- rate data-flow graphs. In Proc. IEEE Asia-Pacific Conference on Circuits and Sys tems, December 1994.
	[10] E. Koutsofios and S. C. North. dot user's manual. Technical report, AT&T Bell Laboratories, November 1996.
	[11] E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M01/ 11, Department of EECS, UC Berkeley, March 2001.
	[12] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE, 75(9):1235-1245, September 1987.
	[13] M. Pankert, O. Mauss, S. Ritz, and H. Meyr. Dynamic data flow and control flow in high level DSP code synthesis. In Proc. ICASSP, 1994.
	[14] C. B. Robbins. Autocoding Toolset software tools for automatic generation of parallel application software. Technical report, Management, Communications & Control, Inc., 2002.
	[15] G. C. Sih. Multiprocessor Scheduling to account for Interprocessor Communi cation. Ph.D. thesis, Department of EECS, UC Berkeley, April 1991.

	Technical Report #UMIACS-TR-2002-98, Institute for Advanced Computer Studies, University of Maryland at College Park, November, 2002

